The effect of silica on polymorphic precipitation of calcium carbonate: an on-line energy-dispersive X-ray diffraction (EDXRD) study.
نویسندگان
چکیده
Calcium carbonate is the most abundant biomineral and a compound of great industrial importance. Its precipitation from solution has been studied extensively and was often shown to proceed via distinct intermediate phases, which undergo sequential transformations before eventually yielding the stable crystalline polymorph, calcite. In the present work, we have investigated the crystallisation of calcium carbonate in a time-resolved and non-invasive manner by means of energy-dispersive X-ray diffraction (EDXRD) using synchrotron radiation. In particular, the role of silica as a soluble additive during the crystallisation process was examined. Measurements were carried out at different temperatures (20, 50 and 80 °C) and various silica concentrations. Experiments conducted in the absence of silica reflect the continuous conversion of kinetically formed metastable polymorphs (vaterite and aragonite) to calcite and allow for quantifying the progress of transformation. Addition of silica induced remarkable changes in the temporal evolution of polymorphic fractions existing in the system. Essentially, the formation of calcite was found to be accelerated at 20 °C, whereas marked retardation or complete inhibition of phase transitions was observed at higher temperatures. These findings are explained in terms of a competition between the promotional effect of silica on calcite growth rates and kinetic stabilisation of vaterite and aragonite due to adsorption (or precipitation) of silica on their surfaces, along with temperature-dependent variations of silica condensation rates. Data collected at high silica concentrations indicate the presence of an amorphous phase over extended frames of time, suggesting that initially generated ACC particles are progressively stabilised by silica. Our results may have important implications for CaCO3 precipitation scenarios in both geochemical and industrial settings, where solution silicate is omnipresent, as well as for CO2 sequestration technologies.
منابع مشابه
Synthesis and Surfactant Effect on Structural Analysis of Nickel Doped Cobalt Ferrite Nanoparticles by C-precipitation Method
Nanoparticles of nickel substituted cobalt ferrite (Nix Co1-xFe2 O4 : 0£ X£ 1) have been synthesized by co-precipitation method. Triton x-100 and oleic acid as surfactants were used. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak were found 17 and 21nm. Their morphology structure have been determined by scanning electron microscop...
متن کاملPrecipitation of Carbonate Minerals Induced by the Halophilic Chromohalobacter Israelensis under High Salt Concentrations: Implications for Natural Environments
The precipitation of carbonate minerals induced by halophilic bacteria has aroused wide concern. The study aimed to investigate the characterization and process of biomineralization in high salt systems by halophilic Chromohalobacter israelensis LD532 (GenBank: KX766026) bacteria, isolated from the Yinjiashan Saltern in China. Carbonate minerals were induced in magnesium sulfate and magnesium c...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملInfluence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs
A consolidating product based on nanoparticles of slaked lime (Ca(OH)2) dispersed in isopropyl alcohol was exposed under different relative humidities (RH), 33%, 54%, 75% and 90% during 7, 14, 21 and 28 days. The characterization of the calcium hydroxide nanoparticles and the formed calcium carbonate polymorphs has been performed by Micro-Raman spectroscopy, Transmission Electron Microscopy (TE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 5 15 شماره
صفحات -
تاریخ انتشار 2013